Скоро для выпускников 11 классов по всей стране настанет горячая пора. День ото дня приближает их к сдаче экзаменов. (ЕГЭ) — централизованно проводимый в Российской Федерации экзамен. Служит одновременно выпускным экзаменом из школы и вступительным экзаменом в вузы и ссузы.
При проведении экзамена на всей территории России применяются однотипные задания и единые методы оценки качества выполнения работ. После сдачи экзамена всем участникам выдаются свидетельства о результатах ЕГЭ (часто ошибочно называемые сертификатами), где указаны полученные баллы по предметам. С 2009 ЕГЭ является единственной формой выпускных экзаменов в школе и основной формой вступительных экзаменов в вузы, при этом есть возможность повторной сдачи ЕГЭ в последующие годы (результаты ЕГЭ действительны в течение двух лет). ЕГЭ проводится по русскому языку, математике, иностранным языкам (английскому, немецкому, французскому, испанскому), физике, химии, биологии, географии, литературе, истории, обществознанию, информатике.
Пояснения к оцениванию заданий
Правильное решение каждого из заданий 1–12 оценивается 1 баллом. Задание считается выполненным верно, если экзаменуемый дал правильный ответ в виде целого числа или конечной десятичной дроби. Решения заданий с развернутым ответом оцениваются от 0 до 4 баллов. Полное правильное решение каждого из заданий 13–15 оценивается 2 баллами; каждого из заданий 16 и 17 – 3 баллами; каждого из заданий 18 и 19 – 4 баллами. Проверка выполнения заданий 13–19 проводится разработанной системы критериев оценивания.
Подготовка к ЕГЭ по математике (профильный уровень): задания
Экзаменационная работа профильного уровня длится 3 часа 55 минут (235 минут). Минимальный порог — 27 баллов. Экзаменационная работа состоит из двух частей, которые различаются по содержанию, сложности и числу заданий. Определяющим признаком каждой части работы является форма заданий: часть 1 содержит 8 заданий (задания 1-8) с кратким ответом в виде целого числа или конечной десятичной дроби; часть 2 содержит 4 задания (задания 9-12) с кратким ответом в виде целого числа или конечной десятичной дроби и 7 заданий (задания 13–19) с развернутым ответом (полная запись решения с обоснованием выполненных действий).
Задание № 1 — проверяет у участников ЕГЭ умение применять навыки, полученные в курсе 5 — 9 классов по элементарной математике, в практической деятельности. Участник должен владеть вычислительными навыками, уметь работать с рациональными числами, уметь округлять десятичные дроби, уметь переводить одни единицы измерения в другие.
Задание № 2 —является одним из простейших заданий экзамена. С ней успешно справляется большинство выпускников, что свидетельствует о владении определением понятия функции. Тип задания № 2 по кодификатору требований — это задание на использования приобретённых знаний и умений в практической деятельности и повседневной жизни. Задание № 2 состоит из описания с помощью функций различных реальных зависимостей между величинами и интерпретация их графиков. Задание № 2 проверяет умение извлекать информацию, представленную в таблицах, на диаграммах, графиках. Выпускникам нужно уметь определять значение функции по значению аргумента при различных способах задания функции и описывать поведение и свойства функции по её графику. Также необходимо уметь находить по графику функции наибольшее или наименьшее значение и строить графики изученных функций. Допускаемые ошибки носят случайный характер в чтении условия задачи, чтении диаграммы.
Задание № 3 — является заданием базового уровня первой части, проверяет умения выполнять действия с геометрическими фигурами по содержанию курса «Планиметрия». В задании 3 проверяется умение вычислять площадь фигуры на клетчатой бумаге, умение вычислять градусные меры углов, вычислять периметры и т.п.
Задание № 4 — задача курса «Теория вероятностей и статистика». Проверяется умение вычислять вероятность события в простейшей ситуации. Пример 4. На окружности отмечены 5 красных и 1 синяя точка. Определите, каких многоугольников больше: тех, у которых все вершины красные, или тех, у которых одна из вершин синяя. В ответе укажите, на сколько одних больше, чем других.
Задание № 5 — базового уровня первой части проверяет умения решать простейшие уравнения (иррациональные, показательные, тригонометрические, логарифмические).
Задание № 6 по планиметрии на нахождение геометрических величин (длин, углов, площадей), моделирование реальных ситуаций на языке геометрии. Исследование построенных моделей с использованием геометрических понятий и теорем. Источником трудностей является, как правило, незнание или неверное применение необходимых теорем планиметрии.
Задание № 7 — проверяет применение производной к исследованию функции. Для успешного выполнения необходимо содержательное, не формальное владение понятием производной.
Задание № 8 — проверяет у участников экзамена знания по элементарной стереометрии, умение применять формулы нахождения площадей поверхностей и объемов фигур, двугранных углов, сравнивать объемы подобных фигур, уметь выполнять действия с геометрическими фигурами, координатами и векторами и т.п.
Задание № 9 — требует от выпускника навыков преобразования и упрощения алгебраических выражений. Задание № 9 повышенного уровня сложности с кратким ответом. Задания из раздела «Вычисления и преобразования» в ЕГЭ подразделяются на несколько видов: преобразования числовых рациональных выражений; преобразования алгебраических выражений и дробей; преобразования числовых/буквенных иррациональных выражений; действия со степенями; преобразование логарифмических выражений; преобразования числовых/буквенных тригонометрических выражений. Задание № 10 — проверяет у учащихся умение использовать приобретенные раннее знания и умения в практической деятельности и повседневной жизни. Можно сказать, что это задачи по физике, а не по математике, но все необходимые формулы и величины даны в условии. Задачи сводятся к решению линейного или квадратного уравнения, либо линейного или квадратного неравенства. Поэтому необходимо уметь решать такие уравнения и неравенства, и определять ответ. Ответ должен получиться в виде целого числа или конечной десятичной дроби.
Задание № 11 — является типовым, но оказывается непростым для учащихся. Главным источником затруднений является построение математической модели (составление уравнения). Задание № 11 проверяет умение решать текстовые задачи.
Задание № 12 — проверяют у учащихся умение выполнять действия с функциями, уметь применять производную к исследованию функции.
Задание № 13 — повышенного уровня сложности с развернутым ответом, проверяющее умение решать уравнения, наиболее успешно решаемое среди заданий с развернутым ответом повышенного уровня сложности.
Задание № 14 — повышенного уровня относится к заданиям второй части с развернутым ответом. Задание проверяет умения выполнять действия с геометрическими фигурами. Задание содержит два пункта. В первом пункте задание нужно доказать, а во втором пункте вычислить.
Задание № 15 — повышенного уровня сложности с развернутым ответом, проверяет умение решать неравенства, наиболее успешно решаемое среди заданий с развернутым ответом повышенного уровня сложности.
Задание № 16 — повышенного уровня относится к заданиям второй части с развернутым ответом. Задание проверяет умения выполнять действия с геометрическими фигурами, координатами и векторами. Задание содержит два пункта. В первом пункте задание нужно доказать, а во втором пункте вычислить.
Задание № 17 — задание с развернутым ответом, это задание проверяет применение знаний и умений в практической деятельности и повседневной жизни, умение строить и исследовать математические модели. Это задание — текстовая задача с экономическим содержанием.
Задание № 18 — задание повышенного уровня сложности с развернутым ответом. Это задание предназначено для конкурсного отбора в вузы с повышенными требованиями к математической подготовке абитуриентов. Задание высокого уровня сложности — это задание не на применение одного метода решения, а на комбинацию различных методов. Для успешного выполнения задания 18 необходим, кроме прочных математических знаний, также высокий уровень математической культуры.
Задание № 19 — задание повышенного уровня сложности с развернутым ответом. Это задание предназначено для конкурсного отбора в вузы с повышенными требованиями к математической подготовке абитуриентов. Задание высокого уровня сложности — это задание не на применение одного метода решения, а на комбинацию различных методов. Для успешного выполнения задания 19 необходимо уметь осуществлять поиск решения, выбирая различные подходы из числа известных, модифицируя изученные методы.